Measurement of Young's modulus of vocal folds by indentation.
نویسندگان
چکیده
OBJECTIVES To assess the accuracy of the indentation method for stiffness measurements and to estimate the Young's modulus of the vocal fold using this technique. STUDY DESIGN Basic science. METHODS Indentation tests were performed using a range of indenter diameters and indentation depths on single- and double-layer silicone rubber models with various cover-layer thicknesses with known geometry and Young's moduli. Measurements were repeated on intact vocal folds and isolated muscle and cover-layer samples from three cadaveric human larynges. RESULTS Indentation on single-layer rubber models yielded Young's moduli with acceptable accuracy when the indentation depth was equal to or smaller than the indenter diameter, and both were smaller than the physical dimensions of the material sample. On two-layer models, the stiffness estimation was similarly influenced by indenter diameter and indentation depth, and acceptable accuracy was reached when indentation depth was much smaller than the height of the top cover layer. Measurements on midmembranous vocal fold tissue revealed location-dependent Young's moduli (in kPa) as follows: intact hemilarynx, 8.6 (range=5.3-13.1); isolated inferior medial surface cover, 7.5 (range=7-7.9); isolated medial surface cover, 4.8 (range=3.9-5.7); isolated superior surface cover, 2.9 (range=2.7-3.2); and isolated thyroarytenoid muscle, 2.0 (range=1.3-2.7). CONCLUSIONS Indenter diameter, indentation depth, and material thickness are important parameters in the measurement of vocal fold stiffness using the indentation technique. Measurements on human larynges showed location-dependent differences in stiffness. The stiffness of the vocal folds was also found to be higher when the vocal fold structure was still attached to the laryngeal framework compared with that when the vocal fold was separated from the framework.
منابع مشابه
Characterization of the vocal fold vertical stiffness in a canine model.
OBJECTIVES/HYPOTHESIS Characterizing the vertical stiffness gradient that exists between the superior and inferior aspects of the medial surface of the vocal fold. Characterization of this stiffness gradient could elucidate the mechanism behind the divergent glottal shape observed during closing. STUDY DESIGN Basic science. METHODS Indentation testing of the folds was done in a canine model...
متن کاملObjective assessment of limb tissue elasticity: development of a manual indentation procedure.
An ultrasound indentation system with a pen-size hand-held probe was developed and used to obtain the effective Young's moduli of forearm and lower limb soft tissues in 12 subjects. Since the probe is manually driven, the alignment of the probe and control of the rate of indentation are parameters upon which the results obtained depend. This paper addresses whether manual indentation tests with...
متن کاملMicrostructure characterization of a decellularized vocal fold scaffold for laryngeal tissue engineering.
OBJECTIVES/HYPOTHESIS One potential treatment for vocal fold injury or neoplasia is to replace the entire vocal fold with a tissue-engineered scaffold. This scaffold should ideally have similar mechanical properties and extracellular matrix composition as the native vocal fold. As one approach toward this goal, we decellularized human vocal folds and characterized their mechanical properties an...
متن کاملEffective elastic properties for lower limb soft tissues from manual indentation experiment.
Quantitative assessment of the biomechanical properties of limb soft tissues has become more important during the last decade because of the introduction of computer-aided design and computer-aided manufacturing (CAD/CAM) and finite element analysis to the prosthetic socket design. Because of the lack of a clinically easy-to-use apparatus, the site and posture dependences of the material proper...
متن کاملQuantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study
Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of voice : official journal of the Voice Foundation
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2011